Flow Visualization around a Rotating Circular Cylinder with Circular-Arc Grooves
نویسندگان
چکیده
منابع مشابه
Flow Visualization Around a Non - Circular Tube
The flow behavior around a cam shaped tube in cross flow has been investigated experimentally using flow visualization and pressure distribution measurement. The range of attack angle and Reynolds number based on an equivalent circular diameter are within 0 ≤ α ≤ 360˚ and 2 x 104 < Reeq < 3.4 x 104, respectively. The pressure drag features are clarified in relation to the flow behavior around t...
متن کاملThermal Field Around a Circular Cylinder with Periodic Vortex Shedding
A numerical study is carried out to investigate the laminar forced convection heat transfer from a circular cylinder. The fluid is assumed to be incompressible, the Reynolds number ranged from 0.1 to 1000, and the Prandtl number was equal to 0.7. The range of study includes heat transfer in creeping flow (Re40). The equations were discretized by a control-volume-based finite difference techniqu...
متن کاملNumerical Simulation of Sediment-Laden Flow Around a Circular Cylinder
In this paper, the sediment-laden flow around a circular cylinder is numerically simulated in order to obtain better understanding of hydrodynamics associated. A range of cases with different Reynolds numbers (Re) are studies. The effects of the concentration of the sediment on the drag coefficient are investigated. Results show that due to the fact that the laden sand particle colliding the cy...
متن کاملDiscrete vortex simulation of the separated flow around a rotating circular cylinder at high Reynolds number
The separated flow around a rotating circular cylinder is investigated by the discrete vortex method combined with the boundary layer theory. The Keller Box method is used to solve the laminar boundary layer in order to determine the separation points on the upper and the lower sides of the rotating circular cylinder. The nascent vortices are then introduced near the separation points. A discre...
متن کاملGravity-driven granular free-surface flow around a circular cylinder
Snow avalanches and other hazardous geophysical granular flows, such as debris flows, lahars and pyroclastic flows, often impact on obstacles as they flow down a slope, generating rapid changes in the flow height and velocity in their vicinity. It is important to understand how a granular material flows around such obstacles to improve the design of deflecting and catching dams, and to correctl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Visualization Society of Japan
سال: 1997
ISSN: 1884-037X,0916-4731
DOI: 10.3154/jvs.17.supplement2_311